skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Danhyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the individual hazard arising from each environmental variable in isolation, but also for the case of bivariate hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially under climatic variability and change that may affect their relationship. In this article, we demonstrate our search for evidence of non-stationarity in the dependence between river discharge and storm surge along the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Niño Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude of dependence as a linear function of large-scale climate indices, i.e., Oceanic Niño Index or NAO index. After model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-stationarity assumption. As an example, we find that during a strong El-Niño year, Galveston Bay, TX, is much more likely to experience a coincidence of abnormal sea level and elevated river stage. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. null (Ed.)
  3. Abstract How to deal with nonignorable response is often a challenging problem encountered in statistical analysis with missing data. Parametric model assumption for the response mechanism is sensitive to model misspecification. We consider a semiparametric response model that relaxes the parametric model assumption in the response mechanism. Two types of efficient estimators, profile maximum likelihood estimator and profile calibration estimator, are proposed, and their asymptotic properties are investigated. Two extensive simulation studies are used to compare with some existing methods. We present an application of our method using data from the Korean Labor and Income Panel Survey. 
    more » « less
  4. Abstract Imputation is a popular technique for handling item nonresponse. Parametric imputation is based on a parametric model for imputation and is not robust against the failure of the imputation model. Nonparametric imputation is fully robust but is not applicable when the dimension of covariates is large due to the curse of dimensionality. Semiparametric imputation is another robust imputation based on a flexible model where the number of model parameters can increase with the sample size. In this paper, we propose a new semiparametric imputation based on a more flexible model assumption than the Gaussian mixture model. In the proposed mixture model, we assume a conditional Gaussian model for the study variable given the auxiliary variables, but the marginal distribution of the auxiliary variables is not necessarily Gaussian. The proposed mixture model is more flexible and achieves a better approximation than the Gaussian mixture models. The proposed method is applicable to high‐dimensional covariate problem by including a penalty function in the conditional log‐likelihood function. The proposed method is applied to the 2017 Korean Household Income and Expenditure Survey conducted by Statistics Korea. 
    more » « less